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1 Neural Networks: An Overview

1.1 Introduction

At a high level, a neural network is a parameterized family of functions. In these notes we will
deal primarily with the simplest so-called fully connected neural networks (see §1.1.1 below).
In practice, neural networks are most commonly used for supervised learning, i.e. finding
a good approximation to an unknown function f from a dataset consisting of its (possibly
corrupted) values at either deterministic or randomly sampled points. We will review how
this works in §1.2. We then formulate and discuss several overarching questions that have
motivated much of the recent theoretical analysis of neural networks in §1.3.

1.1.1 Definition

Definition 1.1.1 (Fully Connected Network (e.g. [Han23])). Fix a positive integer L as
well as L + 2 positive integers N0, . . . , NL+1 and a function σ : R → R. A fully con-
nected depth L neural network with input dimension N0, output dimension NL+1, hidden
layer widths N1, . . . , NL, and non-linearity σ is any function that maps inputs xα ∈ RN0 to

outputs z
(L+1)
α ∈ RNL+1 as follows:

z(ℓ)α =

{
W (1)xα + b(1), ℓ = 1

W (ℓ)σ(z
(ℓ−1)
α ) + b(ℓ), ℓ = 2, . . . , L+ 1

, (1.1.1)

where W (ℓ) ∈ RNℓ×Nℓ−1 are matrices, b(ℓ) ∈ RNℓ are vectors, and σ applied to a vector is
shorthand for σ applied to each component.

The parameters L,N0, . . . , NL+1 are called the network architecture, and z
(ℓ)
α ∈ RNℓ is called

the vector of pre-activations at layer ℓ corresponding to input xα. We will sometimes write

z(ℓ)α = z(ℓ)α (θ)

when we wish to emphasize the dependence of the pre-activations (or network outputs if

ℓ = L+ 1) on the network parameters θ, which are simply a flattened list of the entries W
(ℓ)
ij

of the weight matrices and components b
(ℓ)
i of the bias vectors. We will also sometimes write

z(ℓ)α =
(
z
(ℓ)
i;α, i = 1, . . . , Nℓ

)
where we wish to speak about the individual components of the pre-activations. In this
notation, the recursion (1.1.1) reads

z
(ℓ)
i;α =

{∑N0
j=1W

(1)
ij xi;α + b

(1)
i , ℓ = 1∑Nℓ

j=1W
(ℓ)
ij σ(z

(ℓ−1)
j;α ) + b

(ℓ)
i , ℓ = 2, . . . , L+ 1

. (1.1.2)
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1 Neural Networks: An Overview

1.1.2 Two Examples of Functions Computed by a Neural Network

In this section, we give two brief examples of functions computed by ReLU networks i.e. fully
connected networks with the most popular non-linearity used in practice:

σ(t) = ReLU(t) := max {0, t} .

The first example is the following:

x 7→ σ

((
2
−4

)T

σ

((
1
1

)
x+

(
0

−1/2

)))
=: f(x).

A quick computation shows that this is the triangle or hat function:

f(x) =


2x, x ∈ [0, 1/2]

1− 2x, x ∈ [1/2, 1]

0, x ∈ (−∞, 0) ∪ (1,∞)

,

which plays a fundamental role in signal processing. The second example is more broad.
Consider all one hidden layer ReLU networks with input and output dimensions equal to 1
(i.e. L = 1, N0 = N2 = 1):

z(x) = b(2) +

N1∑
i=1

W
(2)
i σ

(
W

(1)
i x+ b

(1)
i

)
, b

(1)
i ,W

(1)
i ,W

(2)
i , b(2) ∈ R. (1.1.3)

The key point is the following

Lemma 1.1.2. The space of functions obtained by varying W
(1)
i , b

(1)
i ,W

(2)
i , b(2) in (1.1.3)

contains all continuous piecewise linear functions with at most N1−1 breakpoints (i.e. points
of discontinuity for the derivative) and is contained in the space of all continuous piecewise
linear functions with N1 breakpoints.

Proof Sketch. The idea is that the the i-th neuron x 7→ W
(2)
i σ

(
W

(1)
i x+ b

(1)
i

)
is continuous

and piecewise linear with a single breakpoint at

ξi := −b(1)i /W
(1)
i .

The remainder of the argument is left as an exercise.

1.2 Typical Use

The usual process by which one uses a neural network to “learn” from data can be roughly
divided into four steps:

1. Data Acquisition. Collect a dataset D = {(xα, yα))}|D|
α=1 consisting of potentially

noisy observations of an unknown function:

yα = f(xα) + ϵ(xα), ϵ(xα) ∼ N (0, σ2ϵ ). (1.2.1)
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1.3 Big Questions and Small Intuitions

2. Architecture Selection. Choose an architecture, i.e. L,N1, . . . , NL, σ, which specifies

the form of the computation xα 7→ z
(L+1)
α (θ) but does not determine the trainable

parameters θ =
{
W (ℓ), b(ℓ), 1 ≤ ℓ ≤ L+ 1

}
.

3. Initialization. Randomly select the weights and biases to produce a random θ0 and

hence a random function z
(L+1)
α (θ0).

4. Optimization. Obtain a final setting of parameters θ∗ by repeatedly updating θ using
a first order optimization method such as gradient descent

θt+1 = θt −∇θL(θ)
∣∣∣∣
θ=θt

on an appropriate empirical loss

LD(θ) =
1

|D|

|D|∑
α=1

ℓ(yα, z
(L+1)
α (θ)) (1.2.2)

where ℓmeasure how close the current predictions are to their the target y (e.g. ℓ(y, z) =
(y − z)2).

The goal of any supervised learning procedure, such as Steps 1-4 above, is not only to (ap-
proximately) fit the data by asking that

LD(θ∗) is small (1.2.3)

but also to generalize (i.e. extrapolate) by asking that

ℓ(y, z(L+1)(x; θ∗)) is small on average or with high probability over the law (x, y). (1.2.4)

1.3 Big Questions and Small Intuitions

A number of specific tricks are employed in practice for steps 1 − 4 to yield a good approx-
imation in the sense of (1.2.3) and (1.2.4). However, that this process works well at all is
somewhat surprising and motivates a number of important theoretical questions about neural
networks. We discuss several such questions in the sections below.

1.3.1 Q1. Success of non-convex optimization

As explained in §1.2 training a neural network z(x; θ) in practice almost always consists of
minimizing an empirical loss

LD(θ) =
1

|D|
∑

(x,y)∈D

ℓ(y, z(x; θ)) (1.3.1)

using a first order method such a gradient descent

θt+1 = θt − η∇θL(θ)
∣∣
θ=θt

. (1.3.2)
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1 Neural Networks: An Overview

One should expect such a greedy local search to converge to a stationary point of the loss
(i.e. a point where ∇θL(θ) = 0). Thus, with high probability or perhaps with probability 1
in the presence of optimization noise, it therefore seems sensible to predict at large T that
θT will be close to a local minimum of L [JGN+17, ?]. However, in practice, what we find is
that θT is close to a global minimum of L.
Explaining under what assumptions this statement can be made rigorous is an important

open problem in modern machine learning. However, there is a simple intuition for at least
one important mechanism driving the success of non-convex optimization. Namely, neural
networks z(x; θ) in practice are almost always overparameterized in the sense that

#parameters ≫ # training datapoints1. (1.3.3)

The key observation is that while L(θ) is a complex function of θ, it is a simple (e.g. convex)
function in the variables

z(D; θ) := (z(x; θ), (x, y) ∈ D)

that record the outputs on the training dataset. Moreover, precisely because of (1.3.3), a
heuristic dimension-counting argument suggests

the change of variables θ 7→ z(D; θ) is a surjective submersion (1.3.4)

locally near almost every θ. By definition, we thus expect that the Jacobian Dθz(D; θ) ∈
R#parameters×|D| of this map has full rank for most values of θ. Thus, since L(θ) depends on
θ only via z(D; θ), we obtain

∇θL(θ) = 0 ⇐⇒ Dθz(D; θ)∇zL(z)
∣∣
z=z(D;θ)

= 0 ⇐⇒ ∇zL(z)
∣∣
z=z(D;θ)

= 0.

Since L is a simple (e.g. convex) function of z(D; θ), we conclude that a stationary point
of L with respect to θ necessarily corresponds to a global minimum of L. A cartoon of this
situation is illustrated in Figure ??.

Brief Bibliography on Success of Non-Convex Optimization

Many excellent articles have been written on the subject of optimization with neural net-
works. Below is a far from representative list of those pertaining to the success of non-convex
optimization:

• Linear Networks. Neural networks in which the non-linearity σ : R → R is the
identity are called linear networks. The articles [BH89, Kaw16, LK17] show that, under
some technical assumptions, all local minima of the empirical ℓ2-loss over a fixed training
dataset are global minima.

• NTK Regime. As we discuss in §2.2, under certain parameterizations, neural networks
with a fixed depth are close to linear models at large width. Hence, the empirical ℓ2
loss over a training dataset is convex, which allows one to guarantee convergence to a
global minimum. The first work of this kind appears to be [DLT+18] in the special case

1Actually in the setting of modern LLMs one often has more training datapoints than parameters. However,
these datapoints are far from iid, with many very similar examples. So in the heuristic outlined below one
should imagine using an appropriate (and still not understood) notion of effective number of datapoints.
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1.3 Big Questions and Small Intuitions

of one layer ReLU networks. This was then recognized as a general phenomenon for any
non-linearity and any fixed depth in the seminal work [JGH18]. This perspective was
then extended and refined in [ADH+19b] and [LZB22a]. Many other excellent articles
along these lines have been written, e.g. [DZPS19, OS20, LZB22b].

1.3.2 Q2. Generalization with overparameterized interpolation

A cornerstone of traditional statistical learning theory is the bias-variance tradeoff. Roughly
it says that although complex models (e.g. neural networks with many parameters) can
interpolate data in the sense of (1.2.3), such models are so flexible that they will fit not
only the signal, f(x), but also the noise ϵ(x) inherent in the training data. The variance of
predictors learned by such models will therefore be large, causing them to make unreliable
predictions on new data. Overparameterized neural networks are indeed more than capable
of perfectly fitting noisy data (and even random noise). But, when trained on real data, they
often make good predictions on unseen data [ZBH+17]. Understanding why this is possible
raises two important questions in deep learning theory:

• Implicit Bias. Under the overparameterization condition (1.3.3) there are infinitely
many θ that minimize L (e.g. for which z(x; θ) = y for all (x, y) ∈ D). Some of these
θ correspond to functions z(x; θ) that make terrible predictions on new values of x.
This is true even for noiseless data (i.e. with σ2ϵ = 0 in (1.2.1)). However, which θ is
chosen depends very much on the learning algorithm and the learning algorithms used
in practice seem to be able to select, among the sea of minimizers of L, “good” values
of θ. Understanding how the details of the learning algorithm (usually a variant of
SGD) determine the properties of the learned minimizer of L is sometimes referred to
as understanding the implicit bias or implicit regularization. Just below, we illustrate
perhaps the simplest example of the implicit bias of gradient descent, in which appropri-
ately initialized SGD returns the minimal ℓ2-norm interpolant in ordinary least squares
regression.

• Benign Overfitting. In the presence of noise in the data generating process (i.e.
σ2ϵ ̸= 0 in (1.2.1)), trained neural networks that exactly fit the training data still often
can reliable predictions on unseen inputs [ZBH+17]. This seems to fly in the face of the
traditional imperative to regularize models and is known as benign overfitting, a term
coined in [BLLT20]. Explaining why and when it occurs is an important open problem.

A general language for explaining implicit bias remains elusive. However, there is a clear
high-level intuition that might reasonably explain a part of why learned interpolants are
often well-behaved. The basic idea is that in practice optimization is only possible with well-
tuned architecture-dependent initialization schemes. The resulting distribution over functions
z(L+1)(x; θ0) at the start of training (where θ0 is chosen at random) specifies the initial con-
ditions for optimization, and good optimization schemes used in practice are biased towards
simple functions. Moreover, first order optimization methods are a kind of greedy local search.
Hence, at least intuitively, neural network optimization will seek out a way to fit the training
data that is “as close as possible” to the simple functions represented by randomly initialized
networks.

Perhaps the most canonical example of this is regression with overparameterized linear
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1 Neural Networks: An Overview

models in which optimization is performed by GD or SGD2. More precisely, we consider a
linear model

z(x; θ) =
P∑

j=1

θjϕj(x) (1.3.5)

with fixed basis functions ϕj : Rn0 → R and a collection of training datapoints

D = {(xα, yα), α = 1, . . . , |D|} ⊆ RN0+1.

We will assume that the model is overparameterized, which in this case means

P = # parameters > # datapoints = |D| .

Consider the empirical loss

LD(θ) =
∑

(xα,yα)∈D

ℓ (z(xα; θ), yα) ,

where for each y the function z 7→ ℓ(z, y) is strictly convex and achieves a minimum only at
on the diagonal z = y (e.g. ℓ(z, y) = (z − y)2). Minimizing LD is equivalent to solving an
underdetermined systems of linear equations with |D| equations and P unknowns. The set
of solutions to such a system of equations is a hyperplane that is parallel to the kernel of the
transpose of the |D| × P feature matrix Φ defined by

Φ := (ϕ1(D), . . . , ϕP (D)) , ϕj(D) =
(
ϕj(x1) · · ·ϕj(x|D|)

)T
.

See Figure ??. This hyperplane is the manifestation in this context of the infinitely many
minima one generically expects for an empirical loss in an overparameterized neural network.
Since the loss L is convex, any reasonable first order method such as gradient descent with a
sufficiently small step size will converge to a global minimum.
The question of implicit bias is now: what determines which particular minimizer one will

obtain? In this case, the answer comes by noting that the gradient of the loss

∇θLD(θ) =

|D|∑
α=1

∂zℓ(z, y)
∣∣
z=z(xα;θ),y=yα

· Φ(xα) ∈ col(Φ) (1.3.6)

always belongs to the column space of Φ. The key point is that col(Φ) is perpendicular to the
kernel of ΦT and hence we conclude that gradient descent starting from θ0 converges to the
orthogonal projection of θ0 onto the space of minima of L. Put another way, gradient descent
starting at θ0 converges to the nearest, in the ℓ2 sense, minimum of L. This observation can
be further understood by considering the decomposition

θ = θ|| + θ⊥, θ⊥ ∈ ker(ΦT ), θ|| ∈ col(Φ). (1.3.7)

Since ∇θLD(θ) ∈ col(Φ), we see that θ⊥ does not change in the course of gradient descent.
In contrast, LD is strictly convex on col(Φ) and hence θ|| converges to the unique minimum

2The derivation below is certainly an old idea, and the author does not know its exact intellectual provenance.
The author first learned about it from discussion with Misha Belkin at the Simons Institute in 2019. See
also §11.3.2 in [DHP21].
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1.3 Big Questions and Small Intuitions

of LD inside col(Φ). This unique minimum is precisely the minimal ℓ2-norm minimizer of L.
The appearance of the ℓ2 norm on RP comes because we compute gradients using the ℓ2 inner
product.

An interesting consequence of the preceding discussion is that gradient descent starting
at θ0 = 0 converges to the minimal ℓ2-norm minimizer of L. This helps to explain why
implicit bias is sometimes referred to as implicit regularization: while we did not seem to
explicitly penalize the ℓ2 norm of the parameter vector θ when minimizing LD, our choice of
optimization algorithm implicitly does this for us.

Of course when z(x; θ) is non-linear in θ the preceding discussion – in particular the crucial
relationship (1.3.6) – no longer holds.

Bibliography on Implicit Bias

Many excellent articles have been written on the subjects of implicit bias and benign overfit-
ting with neural networks. Below is a far from representative list:

• Logistic Regression. The implicit bias of gradient descent toward maximum margin
optima for vanilla logistic regression with separable data was shown in [SHN+18]. This
was then extended to more general homogeneous neural network in [LL19, JT20].

• Linear Networks/Matrix Factorization. The implicit bias of the optimizer so-
called diagonal linear networks was worked out in [WGL+20]. See also [ACHL19].
Other interesting directions include understanding the implicit bias of gradient descent
in linear convolutional networks [GWB+18] and for matrix factorization [GLSS18].

1.3.3 Q3. Feature/Transfer Learning.

Perhaps the most mathematically well-understood form of learning relies on approximation
by linear spaces of functions. Such linear models take the form

z(x; θ) =
∑
j≥1

θjϕj(x),

where (ϕj(x), j ≥ 1) is a given set of functions. The choice of a “good” basis – one in which the
unknown function f has in some sense an efficient expansion – is key to providing theoretical
guarantees for how well one can estimate the vector of coefficients θ based on observations
from f . Note that, in contrast, the ith component of the output of a neural network can be
written as

z
(L+1)
i;α (x; θ) =

nL∑
j=1

W
(L+1)
ij ϕj(xα; θ), ϕj(xα; θ) = σ

(
z
(L)
j;α

)
.

Hence, neural network training can be viewed as learning both basis function and the coeffi-
cients in the linear combination simultaneously. It is widely believed that the ability to learn
data-adaptive basis functions (a.k.a. features) is a key component of the success of neural
networks and many fascinating articles have attempted to understand this point.
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1 Neural Networks: An Overview

Bibliography on Feature/Transfer Learning

Many excellent articles have been written on the subjects of feature learning in neural net-
works. Below is a far from representative list:

• Staircase Property and Leap Complexity. Breakthrough work [AAM22] and its
followup [AAM23] characterized the implicit bias of GD for learning of sparse polyno-
mials with one layer networks. This is related to the impactful works [AGJ21, BAGJ22]
about SGD in high dimensions.

• Single-index Models. A range of articles show that it one layer networks can effi-
ciently learn planted one-dimensional structure in the data generating process. These
articles include [BBSS22, AKLS23].

• Multi-index Models. A number of excellent papers concern learning multi-index
models by gradient descent with one layer networks. These include [BMZ23, MHPG+22,
CWPPS23, BBPV23].
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2 Analysis of One Layer Networks

2.1 Introduction

In this section, we analyze optimization of a hidden layer network with output dimension 1

z(2)(x; θ) =
1

γ
√
N1

N1∑
i=1

W
(2)
i σ

(
1√
N0

W
(1)
i · x

)
, W

(1)
i ∈ RN0 , W

(2)
i ∈ R (2.1.1)

trained by gradient flow

d

dt
θt = −η∇θLD(θt), θt =

(
W

(1)
i (t),W

(2)
i (t)

)N1

i=1
(2.1.2)

to minimize the empirical mean squared error

LD(θ) :=
1

|D|
∑

(x,y)∈D

(
z(2)(x; θ)− y

)2
(2.1.3)

over a dataset D1. While our analysis focuses on gradient flow, it applies equally well to
gradient descent with a sufficiently small step size. The initial condition θ0 for optimization
will be determined by setting

W
(1)
ij ,W

(2)
i ∼ N (0, 1) iid i = 1, . . . , N1, j = 1, . . . , N0. (2.1.4)

We will describe optimization in the regime where the input dimension N0, the output di-
mension N2 and dataset size |D| are fixed but the hidden layer width N1 tends to infinity.
As we shall see, the size of the constant γ, which we have used to scale the neural network
output in (2.1.1), will play a crucial role in our analysis:

• γ = Θ(1): This regime is known as the kernel or lazy or NTK regime. In this setting
we will see in §2.2 that when N1 → ∞, neural networks are equivalent to linear models.
More precisely, the entire trajectory of optimization converges to that of the linear
model obtained by linearizing the network (2.1.1) around the initialization (2.1.4):

z(2)(x; θ) 7→ z(2)(x; θ0) +
〈
∇θz

(2)(x; θ0), θ − θ0

〉
. (2.1.5)

This somewhat surprising phenomenon was first discovered in the special case of one
layer ReLU network in [DLT+18] and then derived for network at any fixed depth and
a broad class of activations in [JGH18]. See also [ACGH19, DZPS19]. In §2.2 below,
we will mainly follow the presentation in [LGJ20].

1The pre-factor η in (2.1.2) is a way to rescale the time variable t, which will be necessary in the mean-field
analysis presented in §2.3.
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2 Analysis of One Layer Networks

• γ = Θ(
√
N1): This regime is known as the mean field or rich regime. We explain

§2.3.2 that optimization can be equivalently re-formulated as either ℓ2-based optimal
transport or as a particularly simple McKean-Vlasov process. In this regime, neural
networks are not linear models and learn complex data-dependent features, even when
N1 → ∞. The exact nature of this feature-learning has been extensively studied (see e.g.
[AAM22, AAM23, BMZ23, BBSS22, BBPV23]), but is far from completely understood.

The optimal transport point of view was first discovered in two more or less concurrent
articles [MMN18, CB18b]. An analysis closer to the interacting particle McKean-Vlasov
point of view was first proposed in [RVE18], which was concurrent with the optimal
transport papers, and then developed from a somewhat different point of view in articles
such as [SS20, SS21, PN21].

Unlike the NTK regime, it is usually unclear how to extend the mean-field analysis of
wide neural networks to the setting of more than one hidden layer (see [?, ?, ?, ?] for
some notable exceptions). This remains an active and important area of research.

We sketch in §2.2 and §2.3.2 below the analysis of optimization in the kernel and mean-field
regimes, respectively. Before doing so, we pause to understand the distribution of network
output x 7→ z(2)(x; θ) and gradients x 7→ ∇θz

(2)(x; θ) at initialization (i.e. when θ = θ0) in
§2.1.1. These properties will be used to study the mean field and NTK regimes.

2.1.1 One Layer Networks at Initialization

Distribution of Network Outputs

Let us agree for any network input x ∈ RN0 to write

z(1)(x) :=
(
z
(1)
i (x), i = 1, . . . , N1

)
, z

(1)
i (x) :=

1√
N0

W
(1)
i · x (2.1.6)

for pre-activations in the first layer. With this notation

z(2)(x; θ) =
1

γ
√
N0

N1∑
i=1

W
(2)
i σ

(
z
(1)
i (x)

)
.

As a starting point for understanding optimization, let us assume that the network weights
are initialized at random as in (2.1.4) and determine the distribution of both the hidden layer

pre-activations z
(1)
i (x) and the network output z(2)(x) (see Chapter 3 for a treatment of the

more complicated case of deeper networks). To start, recall that at initialization (2.1.4), the

weight vectors W
(1)
i are iid standard Gaussians in RN0 . The map x ∈ RN0 7→ z(1)(x) ∈ RN1

is thus a centered Gaussian field with iid entries

Cov
(
z
(1)
i (x), z

(1)
j (x′)

)
= δijK

(0)(x, x′), K(0)(x, x′) :=
x · x′

N0
. (2.1.7)

Further, since all weights weights are iid Gaussian, conditional on the first layer weightsW
(1)
i ,

we find that the field x 7→ z(2)(x; θ0) is a centered Gaussian field with conditional covariance

Cov
(
z(2)(x; θ0), z

(2)(x′; θ0) | W (1)
i , 1 ≤ i ≤ N1

)
=

1

γ2N1

N1∑
i=1

σ
(
z
(1)
i (x)

)
σ
(
z
(1)
i (x′)

)
.
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2.2 Analysis of Optimization in the Kernel Regime

At finite width the full distribution of x 7→ z(2)(x; θ) is that of a Gaussian field with an
independent random covariance and hence is not Gaussian. However, note from (2.1.7) that
the summands in this random covariance are iid. Thus, we find in the infinite width limit
N1 → ∞ that this covariance becomes deterministic:

K(2)(x, x′) := lim
N1→∞

1

γ2N1

N1∑
i=1

σ
(
z
(1)
i (x)

)
σ
(
z
(1)
i (x′)

)
=

1

γ2
E
[
σ
(
z
(1)
1 (x)

)
σ
(
z
(1)
1 (x′)

)]
,

where the expectation is with respect to the standard Gaussian W
(1)
1 . If γ is a fixed positive

number, then as N1 → ∞, the distribution over outputs of a randomly initialized one layer
network is therefore a Gaussian field at infinite width. This simplification was first pointed out
by Neal in [Nea96]. It was then extended to networks of any depth under various assumptions
and levels of rigor in [LBN+18, Yai20, Han23, GARA18, HBSDN20, Yan19].

Distribution of Network Gradients

Here we discuss the distribution of the field of parameter-gradients x 7→ ∇θz
(2)(x; θ) at

initialization when N1 grows. The dimension of the output of this field is N1 (N0 + 1), which
diverges in this regime. However, as we’ll see in §2.2, we need only understand the inner
products of these gradient vectors (times the learning rate), i.e. the so-called neural tangent
kernel [JGH18, ADH+19b],

NTK(x, x′; θ) := η
〈
∇θz(x; θ),∇θz(x

′; θ)
〉

(2.1.8)

to understand many aspects of optimization. Explicitly, we have

NTK(x, x′; θ) :=
η

γ2N1

N1∑
i=1

σ
(
z
(1)
i (x)

)
σ
(
z
(1)
i (x′)

)
+
x · x′

N0
σ′
(
z
(1)
i (x)

)
σ′
(
z
(1)
i (x′)

)
. (2.1.9)

Since by (2.1.7) the pre-activation fields x 7→ z
(1)
i (x) are iid, we find that at large N1

NTK(x, x′; θ) ≈ η

γ2
E
[
σ
(
z
(1)
i (x)

)
σ
(
z
(1)
i (x′)

)
+
x · x′

N0
σ′
(
z
(1)
i (x)

)
σ′
(
z
(1)
i (x′)

)]
, (2.1.10)

where the expectation is over the Gaussian distribution of the first layer weights. Assuming
that our data is normalized so that ||x||2 = Θ(N0), we find that this expectation is order 1 if
and only if

η = Θ
(
γ2
)
. (2.1.11)

We will see below that this is indeed the correct scaling of η so that gradient flow (2.1.2) has
a well-defined limit as N1 → ∞.

2.2 Analysis of Optimization in the Kernel Regime

In this section, we present an influential line of work on the so-called NTK (aka linear, kernel,
or lazy) regime of neural networks [DLT+18, JGH18, LZB22a]. This regime occurs when
we set the γ appearing the definition (2.1.1) to be a constant, which we shall take to be 1,
independent of the network width N1. The main result is the following
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2 Analysis of One Layer Networks

Theorem 2.2.1 ([DLT+18, JGH18, LZB22a, CB18a]). Fix L, n0 ≥ 1 and nL+1 = 1 as well
as σ : R → R with σ ∈ C2 polynomially bounded and has infinitely many non-zero terms in
its Hermite expansion. Define

L(θ) =
m∑
i=1

(
z(L+1)(xi; θ)− yi

)2
, (xi, yi) ∼ P iid.

Consider
d

dt
θt = −∇θL(θt)

with θ0 as in (2.1.4). If n1, . . . , nL = poly(m) then under mild assumptions on P and with
with high probability over the distribution of the training data and over initialization

(i) Optimization is successful in the sense that

lim
t→∞

L(θt) = 0

(ii) The entire trajectory of optimization is close to its linearization around t = 0 in the
sense that there exist α > 0 so that

sup
t≥0

∣∣∣∣∣∣θt − θlint

∣∣∣∣∣∣ = O(min {n1, . . . , nL}−α) (2.2.1)

where

d

dt
θlint = −∇θLlin(θlint )

Llin(θ) =

m∑
i=1

(
z(L+1),lin(xi; θ) = yi

)2
z(L+1),lin(x; θ) = z(L+1)(x; θ0) +∇θz

(L+1)(x; θ0) (θ − θ0)

For the estimates (2.2.1) we refer the reader to Appendix B of [BMR21]. The basic idea of
the proof of Theorem 2.2.1 is the same for any network depth L and relies on two key ideas:

• Idea 1. Rewriting the training dynamics in terms of the neural tangent kernel, defined
in (2.1.8).

• Idea 2. Checking that the change in the neural tangent kernel over the course of
training tends to zero in the infinite width limit.

We illustrate both these ideas for L = 1 in §2.2.1 and §2.2.1 below.

2.2.1 Role of the NTK in Optimization

Let us consider for a moment a more general optimization problem of fitting the parameters
of a generic differentiable model z(x; θ) by gradient flow

d

dt
θt = −η∇θL(θt) (2.2.2)
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2.2 Analysis of Optimization in the Kernel Regime

on the empirical loss

L(θ) = 1

2

m∑
i=1

(z(xi; θ)− yi)
2

over a dataset D = {(xi, yi)}. As a function of θ, the loss L(θ) is rather complicated. However,
L is a simple function of the values

z(D; θ) = (z(xi; θ), (xi, yi) ∈ D)

the model takes on the training data. A simple computation shows that

d

dt
z(D; θt) = −TK(θt) (z(D; θt)− Y ) ,

where

TK(θ) := (η ⟨∇θz(xi; θ),∇θz(xj ; θ)⟩ , 1 ≤ i, j ≤ |D|) , Y = (y1, . . . , ym) ,

where TK(θ) is sometimes called the tangent kernel of the model [LZB22a]. Geometrically
this means that TK(θt)

−1 plays the role of a Riemannian metric on the tangent space at the
function z(·; θt) that is used to perform gradient descent in the new coordinates z(D; θ). This
implies the following simple but fundamental result

Lemma 2.2.2. Suppose there exists δ > 0 so that we have the following inequality of PSD
matrices

TK(θt) ≥ δI ∀t ≥ 0. (2.2.3)

Suppose further that

L(θ) =
m∑
i=1

ℓ(z(xi; θ), yi)

with ℓ(a, b) a jointly strictly convex function in a, b. Then for η sufficiently small

L(θt)−min
θ

L(θ) ≤ e−cηt

(
L(θ0)−min

θ
L(θ)

)
for some c > 0.

Proof. The condition (2.2.3) ensures that

⟨TK(θt)∇zL(z(D)),∇zL(z(D; θt))⟩ ≥ c ||∇zL(z(D; θt))||2 .

Since L is strictly convex as a function of the predictions of the model z(·; θ) on the training
data, this guarantees exponential convergence to a minimum.

Corollary 2.2.3. Suppose

L(θ) =
m∑
i=1

(z(xi; θ)− yi)
2 .

Then, if Θ(θt) ≥ δI for all t ≥ 0, then optimization is successful

lim
t→∞

L(θt) = 0.
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2 Analysis of One Layer Networks

Linearization at Large Width

To apply Lemma 2.2.2 in our setting of one hidden layer networks we must check that the
condition (2.2.3) holds with high probability. This is typically done in two steps

(i) Show that (2.2.3) holds at initialization, i.e. that

NTK(θ0) ≥ δI, δ > 0. (2.2.4)

(ii) Show that the NTK remains positive definite during training:

sup
t≥0

||Θ(θ0)−Θ(θt)|| ≤
δ

2
. (2.2.5)

Let’s see how this works in our particularly simple case of one layer networks with NTK
parameterization in which γ, η = Θ(1). The key observation for step (i) is that by (2.1.10)
the matrix NTK(θ0) is actually an average of N1 iid random matrices. Hence, when N1 is
large it concentrates rapidly around it’s mean, which has the form

E [NTK(θ0)] =

(
E
[
σ
(
z
(1)
i (xi)

)
σ
(
z
(1)
i (xj)

)
+
x · x′

N0
σ′
(
z
(1)
i (xi)

)
σ′
(
z
(1)
i (xj)

)])
1≤i,j≤|D|

.

(2.2.6)

It therefore remains to check that this matrix is strictly positive definite with high probability
over the dataset D. The mean of the NTK is precisely the Gram matrix for the vectors(

σ

(
W · x√
N0

)
,
x1√
N0

σ′
(
W · x√
N0

)
, . . . ,

xN0√
N0

σ′
(
W · x√
N0

))
, (x, y) ∈ D,

viewed as elements of L2(RN0 , dµ), where µ is the standard Gaussian measure on W . Thus,
showing that E [NTK(θ0)] is positive definite is equivalent to checking that with high proba-
bility over D, these vectors are linearly independent in this Hilbert space. This requires a bit
of work but is generally an elementary exercise given some genericity conditions on the dis-
tribution of (x, y) ∈ D and the non-linearity σ (i.e. σ is not a polynomial). For instance, the
interested reader can look at Appendix A in [DLT+18] and Theorem 5.2 in [OS20]. Finally
to check step (ii), we begin with the following observation:

||NTK(θ0)−NTK(θt)|| ≤
∫ t

0
max

(x,y)∈D
||Hessθz(x; θs)|| ||∇L(θs)|| ds,

where Hessθz(x; θ) is the Hessian with respect to the parameters of the neural network. The
estimate (2.2.5) then reduces to deriving an inequality of the form

||Hessθz(θ)|| ≤
poly (#training datapoints)√

width
, ∀ ||θ − θ0|| ≤ R.

To see why this must be true, note that

∂2

∂W
(ℓ1)
i ∂W

(ℓ2)
j

z(2)(x; θ) =
1√
N1

δij ·Θ(order 1 object) , ℓ1, ℓ2 ∈ {1, 2} . (2.2.7)
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2.3 One Layer Networks in the Mean Field Regime

Hence,

Hessθz
(2)(x; θ) =


H1(θ) 0 · · · 0

0 H2(θ) · · · 0
...

...
. . .

...
0 · · · 0 Hn1(θ)

 , Hi(θ) = Hess
W

(1)
i ,W

(2)
i

z(2)(x; θ)

The pre-factor in (2.2.7) shows that∣∣∣∣∣∣Hessz(2)(x; θ0)∣∣∣∣∣∣ = O

(
1√
N1

)
.

So at initialization a one layer network is close to it’s linearization. Moreover, some simple
perturbation theory shows that

||θ − θ0|| not too large =⇒
∣∣∣∣∣∣Hessθz(2)(x; θ)∣∣∣∣∣∣ = O

(
1√
N1

)
,

with the implicit constant depending on the training dataset D. Completing proof then
requires showing that the parameters don’t leave a sufficiently large ball around initialization.

2.3 One Layer Networks in the Mean Field Regime

In the mean-field regime, a one layer neural network takes the form

z(2)(x; θ) =
1

N1

N1∑
i=1

W
(2)
i σ

(
z
(1)
i (x)

)
, z

(1)
i (x) =

W
(1)
i · x√
N0

. (2.3.1)

This corresponds to setting γ =
√
N1 in (2.1.6). While the choice of γ may only appear to be

a matter of parameterization, we will see in §2.3.2 it has a significant effect on the nature of
first order optimization with one layer networks. Before explaining this, we take a brief but
useful detour in §2.3.1 to explain how to view any one layer neural network in the mean field
regime as a probability measure.

2.3.1 One Layer Networks as (Empirical) Measures

The neural network (2.3.1) can naturally be rewritten in terms of a measure on RN0+1:

z(2)(x; θ) =

∫
RN0+1

W (2)σ

(
W (1) · x√

N0

)
dρθ(W

(1),W (2)),

where

ρθ(W
(1),W (2)) :=

1

N1

N1∑
i=1

δ{
W

(1)
i ,W

(2)
i

}
is simply the empirical measure of incoming and outgoing weights across all neurons. Thus,
there is map from the space of one layer networks to the space of probability measures
P(RN0+1) on RN0+1. Except on a measure 0, the image of the networks with hidden layer
width N1 is the collection of empirical measures with N1 atoms in P(RN0+1). Any question
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2 Analysis of One Layer Networks

about one hidden layer networks can, using the mapping from one layer networks to proba-
bility measures, be translated into a question about the linear space P(RN0+1). This is often
useful since one can now reason about networks of all widths N1 ≥ 1 in a uniform way.

Consider for example, the classical question of which functions f : RN0 → R can be
well-approximated by one hidden layer networks with non-linearity σ and width N1? The
identification between one layer networks and measures naturally decomposes this into two
questions:

1. Approximation at infinite width. Which functions f : RN0 → R can be written

f(x) =

∫
RN0+1

W (2)σ(W (1) · x)dµ(W (1),W (2)) (2.3.2)

for some µ ∈ P(Rn0+1)?

2. Rate of approximation. Given a measure µ ∈ P(Rn0+1), how well can it be approx-
imated by an empirical measure with N1 atoms?

The answer to question 1 is that for any “reasonable” non-linearity σ (e.g. not a polynomial
on some interval), every “reasonable” function (say continuous) can be written in the form
(2.3.2). This is essentially the point of view taken by Hornik [HSW89]. Obtaining sharp
answers to the second question is more subtle (see [Bar92, MP16]). One simple approach is
to note that every µ ∈ P(RN0+1) can be approximated in the infinite width limit by such
measures by the law of large numbers

1

N1

N1∑
i=1

δ
W

(1)
i ,W

(2)
i

→ µ,
(
W

(1)
i ,W

(2)
i

)
∼ µ i.i.d., (2.3.3)

where the convergence is in the weak sense and occurs almost surely. For example using a
uniform central limit theorem to quantify the rate of convergence in (2.3.3) one may obtain

as in Barron [Bar92] a N
−1/2
1 upper bound on the rate of convergence for certain function

spaces.

2.3.2 Optimization of One Layer Networks in the Mean Field Regime

The identification between one layer networks and empirical measures has been used by a
variety of authors to understand not just approximation with one layer networks but also
optimization [MMN18, CB18b, RVE18, SS20, SS21, BP22]. The high-level takeaways from
these articles are as follows:

• Optimal transport. Suppose that our training data is generated by

y = f(x),

for some fixed f : RN0 → R, which admits a representation

f(x) =

∫
RN0+1

W (2)σ
(
W (1)x

)
dµf (W

(1),W (2)).

Suppose further the empirical loss of the training dataset is replaced by the population
loss

L(θ) = E(x,y)

[(
z(2)(x; θ)− y

)2]
.
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2.3 One Layer Networks in the Mean Field Regime

The trajectory of the empirical measures

ρt := ρθt =
1

N1

N1∑
i=1

δ
W

(1)
i (t),W

(2)
i (t)

, (2.3.4)

is that of ℓ2-based optimal transport. The initial condition ρ0 is determined by the
distribution of weights at initialization and the final condition is µf . This point of view
was developed in [MMN18], which describes also many extensions, such as how gradient
flow on an empirical loss approximates gradient on the population loss.

• Particles with Mean-Field Interactions. In the notation of (2.1.2), define

Xi(t) :=

(
1√
N0

W
(1)
i (t) · xα,W (2)

i

)|D|

α=1

, i = 1, . . . , N1

and write

ρ̂t :=
1

N1

N1∑
i=1

δXi(t).

A direct computation shows that, even at finite width, the dynamics of Xi(t) are form
a closed system of mean-field type in the sense that the time-derivative of the “state”
of each “particle” Xi(t) depends on the other particles only through their empirical
measure, i.e.

d

dt
Xi(t) = F (Xi(t), ρ̂t) , (2.3.5)

for an explicit function F (see (2.3.7), (2.3.8)). In this way, the dynamics at any finite
width of a one hidden layer network trained by gradient flow over a fixed dataset is the
discretization of the Vlasov equation with random initial conditions. This is, with some
variations, the point of view taken in [BP22, SS20, SS21].

We will not attempt to reproduce all the technical details of the mean field analysis of one
layer networks. Instead, we explain the basic idea, following the ideas developed in [BP22].
That is we consider optimizing the parameters of a mean-field neural network (2.3.1) by
gradient flow

d

dt
θt = −N1∇θL(θ), L(θ) = 1

2

∑
(xα,yα)∈D

(
z(2)(xα; θ)− yα

)2
(2.3.6)

on the empirical MSE of a fixed training dataset, where the N1 scaling of the learning rate is
dictated comes from the relation (2.1.11). A core observation in [BP22] is that the dynamics
(2.3.6) can be exactly re-written as following

d

dt
z
(1)
i (xβ; θt) =

1

|D|
∑

(xα,yα)∈D

∆αtW
(2)
i (t)σ′

(
z
(1)
i;α(t)

) xα · xβ
N0

(2.3.7)

d

dt
W

(2)
i (t) =

1

|D|
∑

(xα,yα)∈D

∆αtσ
(
z
(1)
i;α(t)

)
, (2.3.8)
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2 Analysis of One Layer Networks

where the residuals ∆αt are functions only of the empirical measures ρ̂t:

∆αt = yα − z(2)α (t) = yα − 1

N1

N1∑
i=1

W
(2)
i σ

(
z
(1)
i;α(t)

)
= yα −

〈
ρ̂t,W

(2)σ
(
z(1)α

)〉
.

The equations (2.3.7) and (2.3.8) are precisely of the form (2.3.5). Moreover, the right hand
side F is Lipschitz when σ′ is Lipschitz. In this case, by propagation of chaos [?, ?], we find
as N1 → ∞ that ρ̂t obeys the following deterministic evolution:

∂tρ̂t = −div (F (x, ρ̂t) · ρ̂t) .

Rewriting this slightly to obtain evolution equations for the empirical measures ρt from (2.3.4),
we obtain the usual continuity equation formulation of optimal transport (see Remark 1.5 in
[SS20] for details).

2.4 Difference Between the Mean Field and NTK Regimes

To conclude this chapter, we investigate why the seemingly small difference in parameteri-
zation – changing γ from 1 to

√
N1 – led to such a big difference between the mean field

and NTK regimes. To understand this we consider the change in the pre-activations. At
initialization in the NTK parameterization we have

d

dt
z
(1)
i;β (t) =

1

|D|
∑

(xα,yα)∈D

∆α0
1√
N1

W
(2)
i (0)σ′

(
z
(1)
i;α(0)

) xα · xβ
N0

.

Computing the mean and variance with respect to the random initialization of W
(1)
i (0) and

W
(2)
i (0) we find

d

dt
z
(1)
i;β (t) is typically order

1√
N1

.

In contrast,

d

dt

∣∣∣∣
t=0

z
(2)
β (t) is typically order 1.

Thus, in the NTK regime, the network output moves much faster than the pre-activations
in the hidden layer. In a regression task (where the network output only needs to move a
finite amount for every datapoint to minimize the loss) we thus expect that in the course of
optimization the change in each hidden layer pre-activation has order 1/

√
N1. Since there

are N1 such pre-activations, this does not mean that in the NTK regime we can neglect the
change in the hidden layer weights. Instead, we expect that we can Taylor expand the change
in the network predictions with respect to the change in the hidden layer pre-activations and
keep only the first order contribution. This precisely corresponds to linearizing the model
around initialization and is the content of Theorem 2.2.1.
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Bibliography on the Analysis of One Layer Networks

• mean field

– [BP22] + [BNL+23]

– [MMN18]

– [SS20, SS21] + others

– [RVE18] + others?

– [CB18b] + others?

– [Yan19, YH21]

• NTK

– [JGH18]

– [?]

– [SJL18]

– [DLT+18, DZPS19]

– [LZB22a, LZB22b]

– [HN20a, RYH22]

• Other ways to leave NTK regime:

– Large P [AAM22, AAM23]

– Large η [LBD+20]

– Time-scale separation [BMZ23]

• High-dimensional optimization:

– Paquette +

– Inbar +

– Krzakala +

– Ben Arous +

– Bietti / Bruna +
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3 Analysis of Deep Neural Networks at Init

In the previous chapter we studied learning with one hidden layer networks at large or infinite
width. In the NTK regime we found that when trained by gradient descent on a fixed dataset,
shallow networks are equivalent to linear models for the purposes of regression tasks (see
§2.2). This kind of result extends readily to networks with any fixed depth [DZPS19, JGH18,
LZB22a, ADH+19a]. We found, in contrast, that in the mean-field regime learning with
one layer neural networks exhibits complex non-linear learning dynamics. Unlike the NTK-
type analysis, most approaches to the mean-field approaches to neural networks have proved
difficult to generalize beyond the case of a single hidden layer. A notable exception is the
excellent article [BP22].

Our purpose in the next two chapters is to understand something about what happens
when learning with networks in which depth and width are both large. The answer to this
question is far from settled, and our purpose here is to survey a few related ideas. In the
present Chapter we start by studying the behavior of neural networks at initialization, i.e.
with random weights. Specifically:

• We begin in §3.1 by giving a precise definition of a random neural network.

• We proceed in §3.2 by investigating the relatively simple case of deep linear networks
at initialization, which are simply products of random matrices. This is a fascinating
subject in its own right. The main lesson we shall learn is that the ratio of the network’s
depth to width plays the role of a kind of “effective depth.” In particular, we find that
the limits as depth and width diverge do not commute.

• We then discuss in §3.3 that at any finite depth L random neural networks converge to
centered Gaussian processes with a covariance kernel K(L) in the infinite width limit.
In §3.3.3 we investigate the properties of K(L) at large depth L. Our core observation
is that as long as the non-linearity is not identity, these kernels are degenerate at large
depth L.

• In §3.4 study the distribution of the outputs of wide neural networks perturbatively with
respect to the network width. We explain how the first order correction – captured by
the fourth cumulant – scales like the ratio of network depth to width. In this way we
find, much as in §3.2, that the depth to width ratio controls the distance to the Gaussian
process limit.

• Finally, in §??, we introduce so-called shaped (i.e. weakly non-linear) activation func-
tions, which are precisely those non-linearities for which the Gaussian process kernel
K(L) has a non-degenerate large L limit.
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3 Analysis of Deep Neural Networks at Init

3.1 What is a Random Neural Network?

Consider a random fully connected neural network with input dimension N0, L hidden layers
of widths N1, . . . , NL, output dimension NL+1, and non-linearity σ. Recall from §1.1.1 that
this means that an input x ∈ RN0 produces an output z(L+1)(x) ∈ RNL+1 through a sequence
of hidden layer representations z(ℓ)(x)

z
(ℓ+1)
i (x) =


1√
Nℓ

∑Nℓ
j=1W

(ℓ+1)
ij σ

(
z
(ℓ)
j (x)

)
, ℓ ≥ 1

1√
N0

∑N0
j=1W

(1)
ij xj , ℓ = 0

.

A random neural network is obtain by taking the network weights to be random:

W
(ℓ)
ij ∼ N (0, CW ) independent, 1 ≤ ℓ ≤ L+ 1, 1 ≤ j ≤ Nℓ−1, 1 ≤ i ≤ Nℓ.

1 (3.1.1)

3.2 Case Study: Deep Linear Networks at Initialization

Before proceeding to the study of non-linear networks, we consider here the behavior at
initialization of deep linear networks, which are obtained by taking σ(t) = t. In this case, the
network output is obtained from the input through a product of matrices:

z(L)(x) =
1√
NL

W (L+1) · · · 1√
N0

W (1)x.

Such matrix products have been well-studied in two regimes:

• Free Probability. In this regime the network depth L is fixed and the matrix sizes Nℓ

tend to infinity. This setting is characterized by matrix spectra that are universal (i.e.
independent of the exact distribution of matrix entries) and maximize an appropriate
non-commutative notion of entropy [AGZ10, MS17].

• Ergodic Theory. In this regime the network widths are typically all equal Nℓ ≡ N and
held constant while the network depth L tends to infinity. This setting is characterized
by rescaled matrix spectra (i.e. Lyapunov exponents) that are minimal entropy in the
sense that they converge almost surely to deterministic limits that are not universal (i.e.
depend on the details of distribution of matrix entries). See [FK60, B+12].

To understand the interplay between depth and width in deep linear networks one must
consider the deep-and-wide regime in which both N and L are large. The key point is that
the limits as N,L → ∞ don’t commute and new phenomena arise. Our purpose here is to
illustrate this in the simplest possible setting. For this, let us assume that ||x|| = 1 and try to
understand what is perhaps the simplest random variable associated to our random matrix
product

XN,L+1 :=
∣∣∣∣∣∣z(L+1)(x)

∣∣∣∣∣∣ ,
which measures the magnitude of the network output at a fixed input. In order to understand
its distribution recall that for any k ≥ 1 a chi-squared random variable with k degrees of
freedom is given by

χ2
k :

d
=

k∑
j=1

X2
j , Xj ∼ N (0, 1) iid.
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3.2 Case Study: Deep Linear Networks at Initialization

Note that for any unit vector u if W ∈ RN×N ′
is a matrix with Wij ∼ N (0, 1) then

1√
N ′
Wu

d
= N

(
0,

1

N ′ IN

)
⇒ ||Wu||2 d

=
1

N ′χ
2
N , ||Wu|| ⊥ Wu

||Wu||
, (3.2.1)

where X ⊥ Y means X is independent of Y . To use this let’s write

XN,L+1 =

∣∣∣∣∣∣∣∣ 1

NL
W (L+1) · · · 1√

N0
W (1)x

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣ 1√
NL

W (L+1) · · · 1√
N1

W (2) W (1)x∣∣∣∣W (1)x
∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣∣∣ 1√

N0
W (1)x

∣∣∣∣∣∣∣∣ . (3.2.2)

This presentation of XN,L is actually a product of two independent terms due to (3.2.1)!
Proceeding in this way, we obtain the following equality in distribution:

XN,L+1
d
=

√
NL+1√
N0

||x|| exp

[
L+1∑
ℓ=1

Yℓ

]
, Yℓ ∼

1

2
log

(
1

Nℓ
χ2
Nℓ

)
independent. (3.2.3)

A simple computation shows that

E
[
1

2
log

(
1

N
χ2
N

)]
= − 1

4N
+O(N−2), Var

[
1

2
log

(
1

N
χ2
N

)]
=

1

4N
+O(N−2).

Thus, we see that

XN,L+1
L≫1
≈

√
NL+1√
N0

||x|| exp
[
N
(
−β
4
,
β

4

)]
,

where

β :=
1

N1
+ · · ·+ 1

NL
≃ L

N

is essentially the depth-to-width ratio when all the hidden layer widths Nℓ are proportional
to a single large constant N . We see moreover that taking Nℓ large in each layer tries to make
each Yℓ close to 1 but with errors of size 1/N . However, these orders add up in the exponent
of (3.2.3) and give an L/N contribution.

Before returning to the study of non-linear networks we make one final remark. Namely,
suppose we now consider a deep linear network with output dimension NL+1 = 1. Applying
the same argument in (3.2.2) (but this time “backwards” starting with x =W (L+1)), we find
for any fixed L that

lim
N1,...,NL→∞

1

NL
W (L+1) · · · 1√

N0
W (1) = N

(
0,

1

N0
IN0

)
.

Hence, for any fixed value of L, the field x 7→ z(L+1)(x) converges as N1, . . . , NL → ∞ to a
centered Gaussian process with normalized Euclidean covariance

lim
N1,...,NL→∞

Cov
(
z(L+1)(x), z(L+1)(x′)

)
=

1

N0

〈
x, x′

〉
,

which is actually independent of L. We will see in the next section that this kind of Gaussian
process result holds also for networks with general non-linear activations.
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3 Analysis of Deep Neural Networks at Init

3.3 GP Limit at Infinite Width and Finite Depth

The starting point for our analysis of random neural networks with general activations is to
understand their behavior at infinite width N1, . . . , NL → ∞. To state the main result, let us
agree that, given a µ : RN0 → R and a kernel K : RN0 × RN0 → R, we will write GP(µ,K)
for the Gaussian process with mean µ and covariance K.

Theorem 3.3.1. Fix L, σ,N0, NL+1 and a non-linearity σ : R → R that is polynomially
bounded in the sense that

∃k ≥ 1 s.t. sup
x∈R

(1 + |x|−k) |σ(x)| <∞.

Then, as N1, . . . , NL → ∞, the sequence of fields x 7→ z(L+1)(x) converges in distribution to
a mean zero Gaussian process with iid components:

lim
N1,...,NL→∞

z(L+1)(·) d
= GP(0,K(L))⊗NL+1 ,

where

lim
N1,...,NL→∞

Cov
(
z
(L+1)
i (xα), z

(L+1)
j (xβ)

)
= δijK

(L)(xα, xβ),

with

K(ℓ)(xα, xβ) =

{
CWEK(ℓ−1) [σ (z1(xα))σ (z1(xβ))] , ℓ ≥ 1
1
N0
xα · xβ, ℓ = 0

(3.3.1)

and we’ve used the symbol EK [·] to denote the expectation over a distribution where x 7→
z
(ℓ)
i (x) are centered Gaussian processes with covariance K that are independent for different
i.

Remark 3.3.2. The GP limit holds not only for fully connected architectures for also for
virtually any feed-forward architecture. See e.g. [LBN+18, Yan19, HBSDN20]. See [Han23]
for some universality results regarding the case of fully connected networks.

We explain how to prove Theorem 3.3.1 in §3.3.2, taking for granted an important and much
harder structural result (Theorem 3.3.3) presented in §3.3.1.

3.3.1 Structural Properties of Random Neural Networks at Large Width

The starting point for virtually every analysis of random neural network is the observation
that the sequence

{
z(ℓ)(x), ℓ = 1, . . . , L+ 1

}
is a Markov chain. Moreover, the transition

probabilities are Gaussian in the sense that, conditional on z(ℓ), the fields x 7→ z
(ℓ+1)
i (x) are

iid mean zero Gaussian processes with conditional covariance

K̂(ℓ)(xα, xβ) : = Cov
(
z(ℓ+1)
m (xα), z

(ℓ+1)
m (xβ) | F (ℓ)

)
= Cb +

CW

nℓ

nℓ∑
j=1

σ
(
z
(ℓ)
j (xα)

)
σ
(
z
(ℓ)
j (xβ)

)
.
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3.3 GP Limit at Infinite Width and Finite Depth

These conditional covariances are examples of collective observables

O(ℓ)
f :=

1

nℓ

nℓ∑
i=1

f
(
z
(ℓ)
i (xα), α ∈ A

)
.

The key technical result is the following:

Theorem 3.3.3 (Structure Theorem for Collective Observables). Suppose σ : R → R is
polynomially bounded. For k ≥ 1 suppose that f1, . . . , fk : R|A| → R are polynomially bounded.
Then

E

 k∏
j=1

(
O(ℓ)

fj
− E

[
O(ℓ)

fj

]) = O
(
N−⌈ k

2
⌉
)
, (3.3.2)

where
N := min {N1, . . . , Nℓ} .

Proof. See Theorem 3.1 and Lemma 7.5 in [Han22].

3.3.2 Derivation of GP Limit: Proof of Theorem 3.3.1 Modulo Theorem 3.3.3

We will show convergence of finite-dimensional distributions and leave tightness as an exercise.
For this, let us fix a finite collection

xA := (xα, α ∈ A) , xα ∈ RN0

of |A| distinct network inputs and agree to write

z(ℓ)m (xA) :=
(
z(ℓ)m (xα), α ∈ A

)
.

By Levy’s continuity theorem we seek to show that for

ξm ∈ R|A|, m = 1, . . . , NL+1

we have

lim
N1,...,NL→∞

E

exp
−i

NL+1∑
m=1

z(L+1)
m (xA) · ξm


 = exp

−1

2

NL+1∑
m=1

ξTmK
(L)
A ξm

 (3.3.3)

with
K

(L)
A =

(
K(L)(xα, xβ)

)
α,β∈A

satisfying (3.3.1). To establish (3.3.3) recall that for any ℓ = 1, . . . , L

z(ℓ+1)
m (xA) | z(ℓ)(xA) are iid centered Gaussian

with covariance K̂(ℓ)(xα, xβ). Thus,

E

exp
−i

NL+1∑
m=1

z(L+1)
m (xA) · ξm


 = E

E
exp

−i
NL+1∑
m=1

z(L+1)
m (xA) · ξm


∣∣∣∣ z(L)(xA)


= E

exp
−1

2

NL+1∑
m=1

ξTmK̂
(L)
A ξm


 . (3.3.4)
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3 Analysis of Deep Neural Networks at Init

Theorem 3.3.3 guarantees that the following convergence in distribution:

lim
n→∞

K̂(ℓ)(xα, xβ) = K(ℓ)(xα, xβ) := lim
n→∞

E
[
K̂(ℓ)(xα, xβ)

]
.

When combined with (3.3.4) this immediately yields that

lim
N1,...,NL

E

exp
−i

NL+1∑
m=1

z(L+1)
m (xA) · ξm


 = exp

−1

2

NL+1∑
m=1

ξTmK
(L)
A ξM

 ,

where
K

(L)
A =

(
K(L)(xα, xβ)

)
α,β∈A

.

Thus, we see that (z
(L+1)
m (xA), m = 1, . . . , NL+1) indeed converges to independent mean 0

Gaussians with covariance K
(L)
A . Moreover, for any ℓ = 1, . . . , L we have

K(ℓ)(xα, xβ) = lim
N1,...,Nℓ+1→∞

Cov
(
z
(ℓ+1)
1 (xα), z

(ℓ+1)
1 (xβ)

)
= lim

N1,...,Nℓ→∞
E

CW

Nℓ

Nℓ∑
j=1

σ
(
z
(ℓ)
j (xα)

)
σ
(
z
(ℓ)
j (xβ)

)
= CWEK(ℓ−1) [σ (z1(xα))σ (z1(xβ))] ,

which confirms (3.3.1). □

3.3.3 Large Depth Asymptotics of the Gaussian Process Limit

In this section, we investigate the effect of depth by first taking N → ∞ and then L → ∞.
While we’ve already seen that the L,N → ∞ limits do not commute in general, we still hope
to gain some information about the effect of depth on the properties of randomly initialized
networks. We investigate four cases:

• Linear. We have according to Theorem 3.3.1

K(ℓ+1)(x, x′) = CWEK(ℓ)

[
z1(x)z1(x

′)
]
= CWK

(ℓ)(x, x′).

Hence, setting CW = 1 shows that the two covariance function for the infinite width
Gaussian process is independent of depth.

• ReLU. We have according to Theorem 3.3.1

K(ℓ+1)(x, x) = CWEK(ℓ)

[
σ(z1(x))

2
]
=
CW

2
K(ℓ)(x, x).

Thus, by taking CW = 2, we can keep the variance of the infinite width Gaussian process
constant. However, a simple computation (see ?) shows that if we define the correlation
operator

C(ℓ)(x, x′) :=
K(ℓ)(x, x′)√

K(ℓ)(x, x)K(ℓ)(x′, x′)
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3.3 GP Limit at Infinite Width and Finite Depth

Then, when ℓ≫ 1,

C(ℓ)(x, x′) = 1 +O(ℓ−2).

In other words, the infinite depth limit of the infinite width Gaussian processes for
ReLU networks is degenerate in the sense that given any two inputs x, x′ of the same
norm, the Gaussian field assigns to both of them the same random (Gaussian) constant.

• Hyperbolic tangent. Setting CW = 1, we have according to Theorem 3.3.1 that

K(ℓ+1)(x, x) = EZ∼N (0,1)

[
σ

(
Z
√
K(ℓ)(x, x)

)2
]
, σ(t) := tanh(t)

Since
t ̸= 0 =⇒ |σ(t)| < |t| ,

we find that

∀ϵ > 0 ∃δ > 0 s.t. K(ℓ)(x, x) > ϵ ⇒ K(ℓ+1)(x, x) ≤ (1− δ)K(ℓ)(x, x).

SoK(ℓ)(x, x) rapidly converges at large ℓ to a small neighborhood of 0. Taylor expanding
tanh(t) at t = 0 then yields at large ℓ that

K(ℓ+1)(x, x) ≈ K(ℓ)(x, x) + 2K(ℓ)(x, x)2 +O
(
K(ℓ)(x, x)3

)
.

Hence, we see that K(ℓ)(x, x) goes to zero like (2ℓ)−1 at large ℓ (this is made precise in
Appendix B of [Han22]). So, just like ReLU (though for different reasons), the Gaussian
processes coming from infinite width networks with tanh activations are degenerate at
large ℓ.

• Shaped hyperbolic tangent. The article [?] studies Bayesian inference with the
shaped non-linearity

σ(t) := t+
ψt

3L
.

Here ψ ∈ R is a parameter that controls the strength of the non-linearity. Although each
layer is close to linear at large L due to the 1/L pre-factor in front of the cubic term,
the overall effect is order 1 at the output. The articles [LNR22, MBD+21] show that
the 1/L scaling is in fact necessary to have a non-degenerate distribution over network
outputs at large depth. Indeed, by Theorem 3.3.1 we have

K(ℓ+1)(xµ, xν) = K(ℓ)(xµ, xν)

(
1 +

ψ

L

(
K(ℓ)(xµ, xµ) +K(L)(xν , xν)

))
+O(L−2).

(3.3.5)

Let us introduce a continuous time index:

ℓ 7→ τ := ℓ/L.

Taking xµ = xν and ℓ→ ∞ gives

d

dτ
K(τ)(xµ, xµ) =

2ψ

L

(
K(τ)(xµ, xµ)

)2
. (3.3.6)
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3 Analysis of Deep Neural Networks at Init

Solving this equation yields

K(τ)(xµ, xµ) =
(
1− 2ψτK(0)(xµ, xµ)

)−1
K(0)(xµ, xµ)

=

(
1− 2ψτ

||xµ||2

N0

)−1
||xµ||2

N0
.

Plugging this back into (3.3.7) and solving a simple ODE shows that when L→ ∞

K(τ)(xµ, xν) =

(
1− 2ψτ

||xµ||2

N0

)−1/2(
1− 2ψτ

||xν ||2

N0

)−1/2
1

N0
⟨xµ, xν⟩ . (3.3.7)

Hence, the variance and covariance of the Gaussian process are non-degenerate at large
L.

3.4 Finite Width Corrections to the Gaussian Process Limit

In this section, we will explore explain, in the simplest possible instance, how to study pertur-
bative corrections in powers of 1/N to the Gaussian process limit N → ∞ of random neural
networks. This has been taken up in a range of prior works [Han18, HR18, HN20a, HN20b,
?, RYH22, Yai20].
To start let’s consider the recursion relation (3.3.1), which describes the infinite width

Gaussian Process covariance K(ℓ+1) in terms of CW , σ and K(ℓ). As shown most fully in
[Han22, RYH22] this recursion is the beginning of a perturbatively solvable hierarchy of
recursions that can be used to describe virtually every observable associated with a random
neural network. This includes the higher cumulants of the functions computed by network
neurons, and we’ll see an example below of how cumulants of order k in layer ℓ + 1 are
determined only via cumulants of order j ≤ k at layer ℓ. We will focus on explaining this
in the context of perhaps the simplest deviation to the Gaussian process behavior at infinite
width, given by the fourth cumulant at a single input

κ
(ℓ)
4 (x) =

1

3
κ
(
z
(ℓ)
1 (x), z

(ℓ)
1 (x), z

(ℓ)
1 (x), z

(ℓ)
1 (x)

)
=

1

3

(
E
[(
z
(ℓ)
1 (x)

)4]
− 3E

[(
z
(ℓ)
1 (x)

)2]2)
.

A simple computation shows that κ
(ℓ)
4 (x) captures both non-Gaussian fluctuations

Var

[(
z
(ℓ)
i (x)

)2]
= 3κ

(ℓ)
4 (x) + 2E

[(
z
(ℓ)
i (x)

)2]2
and inter-neuron correlations

κ
(ℓ)
4 (x) = Cov

((
z
(ℓ)
i (x)

)2
,
(
z
(ℓ)
j (x)

)2)
, i ̸= j.

Since as N1, · · · , NL → ∞, neurons are independent and Gaussian, we have that

lim
N1,...,Nℓ−1→∞

κ
(ℓ)
4 (x) = 0.

The following result shows that, κ
(ℓ)
4 (x) has order depth/width. This is an example of how

the large depth and large width limits do not commute, with depth accentuating finite-width
effects.
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3.4 Finite Width Corrections to the Gaussian Process Limit

Theorem 3.4.1. Fix L,N0, NL+1, σ. Suppose that the weights and biases are chosen as in
(??) and that

N1, . . . , NL ≃ N ≫ 1.

The fourth cumulant is of order O(N−1) and satisfies the following recursion:

κ
(ℓ+1)
4 (x) =

C2
W

Nℓ
VarK(ℓ)

[
σ2
]
+

(
CWEK(ℓ)

[
∂2

∂t2
σ2(t)

])2

κ
(ℓ)
4 (x) +O(N−2). (3.4.1)

Thus, choosing CW to be ”tuned to criticality”, i.e. such that

CWEK(ℓ)

[
∂2

∂t2
σ2(t)

]
= 1,

and taking Nℓ = N , we have

κ
(L+1)
4 (x)(

K(L+1)(x, x)
)2 = Cσ

L

N
+OL,σ(N

−2).

Moreover, for any fix m ≥ 1 and any “reasonable” function f : Rm → R we may write

E
[
f
(
z
(ℓ)
i (x), 1 ≤ i ≤ m

)]
= EG(ℓ)

[
f
(
z
(ℓ)
i (x), 1 ≤ i ≤ m

)]

+
κ
(ℓ+1)
4 (x)

8
EK(ℓ)

( m∑
j=1

∂4zj +

m∑
j1,j2=1
j1 ̸=j2

∂2zj1
∂2zj2

)
f
(
z
(ℓ)
i (x), 1 ≤ i ≤ m

)
+O(N−2). (3.4.2)

Here, G(ℓ) is the dressed two point function

G(ℓ)(xα, xβ) := E
[
z
(ℓ)
1 (xα)z

(ℓ)
1 (xβ)

]
.

This Theorem is originally derived in a physics way in the breakthrough paper of Yaida
[Yai20]. It was then rederived, again at a physics level of rigor in Chapter 4 of [RYH22].
Finally, it was derived in a somewhat different, and more mathematical, way in [Han22]. We
give the sketch of proof in §3.4.1.

3.4.1 Proof Sketch of Theorem 3.4.1

For this proof, since we will suppress the network input x from out notation. So for instance
K̂(ℓ)(x, x) will simply be denoted by K̂(ℓ). Since K̂(ℓ) is a collective observable, it makes sense
to consider

G(ℓ) := E
[
K̂(ℓ)

]
, ∆(ℓ−1) := K̂(ℓ) − E

[
K̂(ℓ)

]
.

The scalar G(ℓ) is sometimes referred to as a dressed two point function. Note that

κ
(ℓ)
4 = E

[(
∆(ℓ−1)

)2]
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Just as before, we have

E
[
f(z

(ℓ)
i , i = 1, . . . ,m)

]
=

∫
Rnm

f̂ (ξ)E
[
e−

1
2
||ξ||2K̂(ℓ)

]
dξ

=

∫
Rnm

f̂ (ξ) e−
1
2
||ξ||2G(ℓ)

E
[
e−

1
2
||ξ||2∆(ℓ−1)

]
dξ.

Applying Theorem 3.3.3 we may actually Taylor expand to find a power series expansion in
1/N :

E
[
e−

1
2
||ξ||2∆(ℓ−1)

]
=
∑
q≥0

(−1)q

2qq!
||ξ||2q E

[(
∆(ℓ−1)

)q]
= 1 +

1

8
||ξ||4 E

[(
∆(ℓ−1)

)2]
+O(N−2).

Putting this all together yields

E
[
f(z

(ℓ)
i , i = 1, . . . ,m)

]
=

∫
Rnm

(
1 +

1

8
||ξ||4 E

[(
∆(ℓ−1)

)2])
f̂ (ξ) e−

1
2
||ξ||2G(ℓ)

dξ +O(N−2).

In particular, we obtain

E
[
f(z

(ℓ)
i , i = 1, . . . ,m)

]
= EG(ℓ) [f ] +

1

8
E
[(

∆(ℓ−1)
)2]

EG(ℓ)

 m∑
j=1

∂2
z
(ℓ)
j

2

f

+O(N−2).

(3.4.3)
A direct computation now shows that

EG(ℓ) [f ] = EK(ℓ) [f ] +O(N−1).

This proves (3.4.2). Next, recall that

κ
(ℓ+1)
4 (x) = E

[(
∆(ℓ)

)2]
.

Moreover,

E
[(

∆(ℓ)
)2]

=
1

nℓ
E
[(
X

(ℓ)
1;α

)2]
+

(
1− 1

nℓ

)
E
[
X

(ℓ)
1;αX

(ℓ)
2;α

]
,

where
X

(ℓ)
j;α := CW

(
σ(z

(ℓ)
j )2 − E

[
σ(z

(ℓ)
j )2

])
.

Applying (3.4.3) and some algebra completes the proof of (3.4.1). □
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4 Nodal Set Problems from Random ReLU
Networks

In this chapter, we briefly survey some problems concerning nodal sets generated by randomly
initialized ReLU networks. This subject seems to have been first considered in [HR19, HR],
and we mainly follow the exposition in these articles. Specifically, let us consider fully con-
nected depth L network

x 7→ z(L+1)(x; θ) ∈ RNL+1

with input dimension N0, hidden layer widths N1, . . . , NL, output dimension NL+1 and ReLU
activations, defined by

z
(ℓ+1)
i (x) =

b
(ℓ+1)
i + 1√

Nℓ

∑Nℓ
j=1W

(ℓ)
ij σ

(
z
(ℓ)
j (x)

)
, ℓ ≥ 0

b
(1)
i + 1√

N0

∑N0
j=1W

(1)
ij xj , ℓ = 0

, (4.0.1)

where i = 1, . . . , Nℓ+1 and
σ(t) = ReLU(t) = max {0, t} .

This definition of a ReLU network differs slightly from our standing definition (2.1.6) in that

we’ve added to the parameter vector θ the network biases b
(ℓ)
i , which in much of the other

Chapters we have set to zero. Throughout this chapter we will make the following

assumption : the output dimension NL+1 = 1.

4.1 Nodal Sets and Nodal Partitions

For any setting of weights and biases θ, the map x ∈ RN0 7→ z(L+1)(x; θ) ∈ R is continuous
and piecewise linear. This means that each θ determines a partition of the input space RN0

into disjoint polyhedra, such that on each such polyhedron the map x 7→ z(L+1)(x; θ) is affine.
We will call this collection of polyhedra the nodal partition associated to a ReLU network.
A well-known observation is that the partition generated by ReLU networks with one

hidden layer of size N1 and input dimension N0 are precisely those arising as the cells in an
arrangements of N1 hyperplanes in RN01. Indeed, the function computed by such a network
is

z(2)(x; θ) = b(2) +

N1∑
i=1

W
(2)
i σ

(
z
(1)
i (x)

)
, z

(1)
i (x) = b

(1)
i +W

(1)
i · x. (4.1.1)

The ith neuron z
(1)
i (x) determines the (co-oriented) hyperplane

H
(1)
i :=

{
x ∈ RN0 | z(1)i (x) =W

(1)
i · x+ b

(1)
i = 0

}
.

1Recall that the cells in an arrangement of co-dimension 1 hyperplanes are the connected components of the
complement of the union of these hyperplanes
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4 Nodal Set Problems from Random ReLU Networks

Figure 4.1: In the left figure, the partition of inputs space induced by a depth 1 ReLU network
with three neurons z1, z2, z3 in its hidden layer. Each neuron zj corresponds to
a hyperplane Hj at which its ReLU turns from on to off. In the right figure,
one connected component of the “bent hyperplane” coming from a neuron in a
subsequent layer it shown.

For inputs x lying on one side of H
(1)
i , the neuron z

(1)
i is “on” in the sense that its post-

activation σ
(
z
(1)
i (x)

)
is the affine functionW

(1)
i ·x+b(1)i , whereas for inputs on the other side

it is “off” in the sense that its post-activation is identically 0. On each cell of the hyperplane

arrangement
{
H

(1)
1 , . . . ,H

(1)
n

}
, the collection of neurons that are on is fixed and hence x 7→

z(2)(x; θ) restricted to such a cell is an affine function. This is illustrated in Figure 4.1.

For deeper ReLU networks we can still define the nodal set

H
(ℓ)
i :=

{
x ∈ RN0 | z(ℓ)i (x) = 0

}

of the ith neuron in the ℓth layer ℓ pre. When ℓ > 1, however, the sets H
(ℓ)
i are in general

no longer hyperplanes. Instead, they can intuitively be thought of as collections of “bent hy-
perplanes,” composed of a finite number of connected components, each of which is piecewise

linear (i.e. locally looks like a hyperplane). For instance, the pre-activation z
(2)
i (x) of a neuron

in the second hidden layer has exactly the same for as the output of a one hidden layer ReLU
network. In particular, it is given by a different affine function on each cell generated by the

arrangement of hyperplanes H
(1)
i , i = 1, . . . , N1, from neurons in the first layer (displayed on

the left in Figure 4.1). The equation for z
(2)
i (x) = 0 is therefore a different linear equation on

each such cell and depends on which neurons in the first layer are on for the input x (see the
right panel in Figure 4.1).

We will call the union of H
(ℓ)
i over all ℓ = 1, . . . , L and all i = 1, . . . , Nℓ the nodal set of

the ReLU network. Similarly, we define the nodal partition of a ReLU network to be the

connected components of the complement of the union of the H
(ℓ)
i ’s.
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4.2 Geometry and Topology ReLU Nodal Sets and Partitions

4.2 Geometry and Topology ReLU Nodal Sets and Partitions

A natural question from the point of view of the study of nodal sets of random functions is
to understand the size and shape of the nodal sets and nodal partitions of a ReLU network
with random weights and biases. Concretely, let x 7→ z(L+1)(x; θ) be a ReLU network with
input dimension N0, hidden layer widths N1, . . . , NL, and output dimension NL+1 = 1 as in
(4.0.1). Suppose moreover that the weights and biases are chosen at random as follows:

W
(ℓ)
ij ∼ N (0, 2), b

(ℓ)
i ∼ N (0, 1) independent, 1 ≤ ℓ ≤ L+ 1, 1 ≤ i ≤ Nℓ.

The factor of 2 in the variance scaling for the weights is necessary to ensure that the average

squared input-output Jacobian E
[∣∣∣∣∇xz

(L+1)(x)
∣∣∣∣2] = 1 for every non-zero network input

(see §??). The following are examples of natural geometric/topological questions about the
nodal set and nodal partition of such a random ReLU network:

• Q1. (Nodal set volume) For any compact set A ⊆ RN0 , what is the distribution of the
random variable

ZA := vol

A ∩
⋃

ℓ=1,...,L
i=1,...,Nℓ

H(ℓ)
i

 ,

where vol denotes the (N0 − 1)-dimensional Hausdorff measure?

• Q2. (Nodal set topology) For any set A ⊆ RN0 , what is the distribution of the random
variable

NA := #

connected components of RN0

∖ ⋃
ℓ=1,...,L
i=1,...,Nℓ

H(ℓ)
i that intersect A

?

• Q3. (Partial nodal set topology) Fix a layer index 1 ≤ ℓ ≤ L + 1 and a neural index
1 ≤ i ≤ Nℓ, and a subset A ⊆ RN0 . What is the distribution of the random variable

CA := #
{
connected components of H

(ℓ)
i that intersect A

}
?

There is essentially nothing known about Q3. For Q1 and Q2, the articles [HR19, HR] show
that, somewhat surprisingly, the means of these random variance depend very weakly on the
network depth. For example, we have the following:

Theorem 4.2.1 ([HR19]). Consider a random ReLU network with input dimension N0,
hidden layer widths N1, . . . , NL as in (4.0.1). There exists a constant C > 0 depending only
on the sum of the reciprocals N−1

1 + · · ·+N−1
L of the hidden layer widths such that for every

A ⊆ RN0

E [ZA] ≤ C (N1 + · · ·+NL) vol(A), (4.2.1)

where vol(A) is the Euclidean volume of A and N1 + · · · + NL is the number of neurons in
the network.
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4 Nodal Set Problems from Random ReLU Networks

The remarkable aspect of the estimate (4.2.1) is that the upper bound depends on the
network architecture only through the number of total neurons and not on whether they
are arranged into a single hidden layer or into a deeper network (under the assumption that
the the sum of reciprocals of the hidden layer widths is bounded). Note that in the case of
one hidden layer network, the random variable ZA is simply a sum of iid positive random
variables:

ZA =

N1∑
i=1

vol
(
A ∩H(1)

i

)
.

In this case, it is easy to see that the variance is small relative to the mean. It is conjectured
that the variance of ZA grows with the network depth. It is an interesting open problem to
prove or disprove this conjecture.
The proof of Theorem is a more or less straight-forward application of the co-area formula

[?] (see ...). Instead of reproducing it, we provide here a simple intuition for why the estimate
(4.2.1) ought to hold when N0 = 1. In this case, we have

ZA =

L∑
ℓ=1

NL∑
i=1

#
{
x ∈ R | z(ℓ)i (x) = 0

}
.

The estimate (4.2.1) then follows once we establish that

E
[
#
{
x ∈ R | z(ℓ)i (x) = 0

}]
= O(1), (4.2.2)

where the implicit constant depends only on the sum of the reciprocals of the hidden layer
widths. Writing

ẑ
(ℓ)
i (x) :=

Nℓ−1∑
j=1

W
(ℓ)
ij σ

(
z
(ℓ)
j (x)

)
,

we have that

z
(ℓ)
i (x) = 0 ⇐⇒ ẑ

(ℓ)
i (x) = −b(ℓ)i .

Note that x 7→ ẑ
(ℓ)
i (x) is a random continuous piecewise linear function. Moreover, by [?],?,

we have

E
[∣∣∣∣∣∣∇xẑ

(ℓ)
i (x)

∣∣∣∣∣∣2] = 1.

Thus, while x 7→ ẑ
(ℓ)
i (x) is not affine, it also can’t many large oscillations. In particular, we

expect that it can cross the random level −b(ℓ)i only a finite number of times, which would
exactly imply (4.2.2).
To complete our discussion of nodal sets of random ReLU networks, let us note that when

the input dimension N0 equals 1, the nodal set of a ReLU network is typically a discrete
number of points. Hence, the number of connected components of the nodal partition, which
are the intervals between these points, is exactly one more than the co-dimension volume (i.e.
the number) of points in the nodal set. In higher input dimension the relationship between
the number of connected components in the nodal partition and the volume of the nodal set
is a bit more subtle, and virtually the only result about the number of connected components
is the following:
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4.2 Geometry and Topology ReLU Nodal Sets and Partitions

Theorem 4.2.2 ([HR]). Consider the same assumptions and notation as in Theorem 4.2.1.
There exists constants δ, C > 0 such that in any cube C of side-length at least δ the average
number of connected components for the nodal partition of a random ReLU network is at most
the volume of C times

min

{
2(N1+···+NL),

1

N0!

(
C (N1 + · · ·+NL)

N0

)}
.

By Zaslavsky’s Theorem on the number of cells in a hyperplane arrangement, we have that
when L = 1, with probability 1, total number of connected components in the nodal partition
of a one layer ReLU network is

N0∑
k=0

(
N1

k

)
≃ min

{
2N1 ,

NN0
1

N0!

}
.

Thus, just as in Theorem 4.2.1, Theorem 4.2.2 suggests that, at least on average, deeper
networks do not have a significantly large number of connected components per neuron in
their nodal partitions.
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overfitting in linear regression. Proceedings of the National Academy of Sciences,
2020.

[BMR21] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a
statistical viewpoint. arXiv preprint arXiv:2103.09177, 2021.
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